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All equilibrium systems are alike; 
each nonequilibrium one is out of equilibrium in its own way
(Anna Karenina principle in many-body physics)

Leo Tolstoy, 1877
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Part 2: Two examples of nonequilibrium stuff
2.1 first one

2.2 second one

Part 1: Intro
1.1 Some general concepts

1.2 Experimental system(s) and tools

Part 3: Three different examples of nonequilibrium stuff
3.1 first one

3.2 second one
3.3 third one



Universality(?)

Physics has always been about explaining a lot with a little. (Eric Cornell)

(something same for…)

Different system parameters (or initial conditions)

Seemingly different physical processes

Seemingly disparate physical systems
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Some attempts at classification (for these lectures)

Origins Contexts Advanced concepts
(“explanations”)

Quenched

Driven

“Intrinsic”
(dissipation, disorder,

integrability…)

Critical 
(phase transition)

dynamics

Turbulence

Turbulence

Nonthermal steady states

Prethermalization

Nonthermal fixed points

Closed systems
Dynamic scaling

Universality far from equilibrium

Not in these lectures: lattices, light-cone dynamics, many-body localization, quantum scars, time crystals… 

……
…



Part 1.2: Quantum gases in general…

Dynamically tuneable – easily induce nonequilibrium dynamics 

Resolvable timescales – microseconds to seconds

Tuneable speed of the dynamics (interactions)

DimensionalityTrapping potentials

magnetic field
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Homogeneous quantum gases (in optical boxes)
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Review: Nir Navon, Rob P. Smith, ZH, arXiv:2106.09716

… as opposed to harmonic traps, where we rely on the local density approximation (LDA)

Blue-detuned laser beams are repulsive

Do you know this?
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• Diverging correlations
• Some things naturally in momentum space
• Fast local density-dependent processes

Review: Nir Navon, Rob P. Smith, ZH, arXiv:2106.09716
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Phase dominance in digital holography

Real Fourier



BEC in a box
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Critical point (weak interactions):

Time-of-Flight
expansion

BECthermal

Simplest quantitative diagnostic:
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Question for the audience

In some trap, the BEC critical temperature for a million (non-interacting spinless bosonic) 
atoms is 400 nK.

If there are 2 million atoms in the same trap at 400 nK, what is the condensed fraction?
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Professional stuff: Jean Dalibard, Collisional dynamics, Varenna 1998

Cheng Chin et al., Feshbach resonances, RMP 2010

So, e.g., mean-field potential in a BEC

Crash course in tuneable s-wave interactions (very sloppy)
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Crash course in tuneable s-wave interactions (very sloppy)
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Fig. 5. – (a) Square potential barrier. (b) Scattering length as a function of k0 =
√

2mrU0/h̄.
For large enough barriers (hard core potential), the scattering length is equal to the radius of
the core.

and with the asymptotic behaviour deduced from (12):

u(r) ∝ r − a for large r .

The physical meaning of the scattering length is then clear. Consider the scattering state
uk,l=0(r) and its asymptotic value ∝ sin(kr+δ0(k)). This asymptotic value has a series of
zeros rn(k) = (−δ0(k)+nπ)/k, where n is an integer. When k goes to zero, all the rn(k)
go to ±∞, except for one which tends to a (which can be either positive or negative).
An illustration of this will be given in fig.10 for the potential V (r) = −C6r−6 +C12r−12.

We now derive the value of the scattering length for some basic potentials before
adressing in the next section the more realistic case of Van der Waals potentials.

3.1. The square potential barrier. – Consider the case of the square spherical barrier
represented in fig. 5a, where V (r) = V0 > 0 if r ≤ b and V (r) = 0 otherwise. The
solution of (30) is then straightforward:

u(r) = C1 (r − a) for r > b
u(r) = C2 sinh(k0r) for r ≤ b

,

where we have put k0 =
√

2mrV0/h̄ and where C1 and C2 are normalizing coefficients.
The continuity of u(r) and u′(r) in r = b then implies:

(31) a = b − tanh k0b

k0
.

This result is plotted in figure 5b. The scattering length is always positive. For large
enough barriers (k0b >> 1 or equivalently U0 & h̄2/(2mrb2)), we recover the hard sphere
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Fig. 6. – (a) Square potential well. (b) Scattering length as a function of k0 =
√

2mrU0/h̄. The
scattering length can be positive or negative and it diverges for values of k0 corresponding to
the appearance of a new bound state in the well.

scattering problem; the scattering length in this case is just equal to the radius b of the
hard sphere core.

3.2. The square potential well. – Consider now a square potential well such that
U(r) = −U0 for r ≤ b (U0 > 0) and U(r) = 0 otherwise (figure 6a). The solution of (30)
is:

u(r) = C1 (r − a) for r > b
u(r) = C2 sin(k0r) for r ≤ b

,

from which we deduce:

(32) a = b − tan k0b

k0
.

The result (32) is plotted in fig. 6b. It is obviously more complicated than the result
found for a square barrier and it is useful for the following to keep in mind the following
remarks:

• For a small potential, i.e. k0b < π/2, the scattering length a is negative. The
condition k0b < π/2 corresponds to the case where U0 is too small to have a bound
state in the potential well.

• If we increase continuously the well depth U0, we find that the scattering length
goes to infinity when k0b = π/2, i.e. when the potential is large enough to hold
a bound state. If we keep increasing U0, we find that such divergences occur for
all values of U0 such that k0b = (2n + 1)π/2, where n is an integer. Each of
these discrete values of U0 corresponds to the appearance of a new bound state in
the potential well. This relation between the divergence of the scattering length

Repulsive 
potential:

Attractive
potential:
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Crash course in tuneable s-wave interactions (very sloppy)



Crash course in tuneable s-wave interactions (very sloppy)

ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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FIG. 2. !Color online" Feshbach resonance properties. !a"
Scattering length a and !b" molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.
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A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,
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Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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Scattering length a and !b" molecular state energy E near a
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WARNING:

Ṅ/N � �N2a4

3-body loss rate (simplest theory, bosons)
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Part 2: Two unintentionally-nonequilibrium stories
2.1 Weak interactions + losses

2.2 Strong interactions + quench + losses (example of prethermalization)

Part 1: Intro
1.1 Motivation, universality vs. stamp collecting

1.2 Experimental system(s) and tools

Part 3: Three related intentionally-nonequilibrium stories
3.1 Critical dynamics

3.2 Turbulence
3.3 Universality far from equilibrium


