

Quantum technologies - 4 pilars

Quantum computation

× *

Quantum sensing

Quantum simulation

Quantum communication

Quantum sensing - metrology

Probing gravity by holding atoms for 20s Science 366, 745 (2019)

Optical lattices to manipulate momentum states: beamsplitters and mirrors

(lecture #1)

Optical clocks in lattices

Precision <10⁻¹⁸ over 1 hour Campbell et al. Science **358**, 90 (2017)

Atoms in deep optical lattices

...also Bloch oscillations to measure forces

(lecture #3)

Atom interferometers

Quantum simulation

Realisation cristalline structures to simulate correlated matter

Optical lattices to create band structures as in solids (lecture #2)

Quantum simulation

Realisation cristalline structures to simulate correlated matter

Implementation of Hubbard hamiltonians (lectures #3 et #4)

Understand and design strongly-correlated quantum matter

- interplay quantum fluctuations/interactions
- quantum phase transitions
- quantum magnetism

- ...

Lectures on optical lattice: (tentative) program

Lecture #1 - introduction to optical lattices

- short reminder on light shifts
- description of optical lattices
- pulsed lattices: coherent coupling of momentum states

Lecture #2 - band structure for non-interacting gases

- Bloch theorem and wave-functions
- band structure
- non-interacting lattice bosons and fermions

Lecture #3 - interacting bosons

- tight-binding regime
- Bose-Hubbard hamiltonian
- superfluid-to-Mott transition

Lecture #4 - interacting fermions

- Fermi-Hubbard hamiltonian
- Mott transition
- super-exchange and magnetism

Quantum gases in Optical Lattices Lecture #1

David CLEMENT

Institut d'Optique - Palaiseau, France

Short reminder on light atom interactions

Advances In Atomic, Molecular, and Optical Physics Volume 42, 2000, Pages 95-170

Optical Dipole Traps for Neutral Atoms

Rudolf Grimm, Matthias Weidemüller, Yurii B. Ovchinnikov

$$U_{\rm dip}(\mathbf{r}) = -\frac{3\pi c^2}{2\omega_0^3} \left(\frac{\Gamma}{\omega_0 - \omega} + \frac{\Gamma}{\omega_0 + \omega}\right) I(\mathbf{r}), \qquad (\Gamma)$$

$$\Gamma_{\rm sc}(\mathbf{r}) = \frac{3\pi c^2}{2\hbar\omega_0^3} \left(\frac{\omega}{\omega_0}\right)^3 \left(\frac{\Gamma}{\omega_0 - \omega} + \frac{\Gamma}{\omega_0 + \omega}\right)^2 I(\mathbf{r})$$

For most practical purposes $|\Delta|\ll\omega_0$

$$\hbar\Gamma_{\rm sc} = \frac{\Gamma}{\Delta} U_{\rm dip}$$
 neglected spontaneous emission at large detuning!

Optical lattice

Simple counter-propagating 1D lattice (no defects, no phonons)

$$V(x) = V_0 \sin(kx)^2$$

Superlattices with two periods λ , 2λ

tilted double-wells

balanced double-wells

Optical lattice in higher-dimensions

I. Bloch - Review Optical lattices - Nature Physics (2005)

Detuning of beams in the different directions to average interference effects between different axis to zero

$$\omega_x - \omega_y \sim 10 - 100 \text{ MHz}$$

More exotic optical lattices

lattices with varying spacing, orientation and symmetry

 $I(x,y) \propto [\sin(kx) + \sin(ky)e^{\mathbf{i}\phi}]^2$

honeycomb and triangular Struck et al., Nat. Phys. (2013)

quasi-cristal (self similarity in *k*-space)

Viebahn et al., PRL 122, 110404 (2019)

(even) more exotic optical lattices

Lattices with synthetic dimensions: internal degrees of freedom of the atoms

Mancini et al., Science (2015)

Pulsed 1D lattice

Gould et al. PRL 56, 827 (1986)

Beamsplitters and mirrors

Science 366, 745 (2019)

Atom optics: Hong-Ou-Mandel exp.

Lopes et al. Nature (2015)

Bragg diffraction: dynamical structure factor

Ernst et al. Nat Phys. (2010)

<u>Momentum transfer:</u> $\mathbf{q} = \mathbf{k}_1 - \mathbf{k}_2$

Energy transfer: $\hbar\omega = \hbar(\omega_1 - \omega_2)$

If the perturbation is small (linear response), measure of the **dynamical structure factor** $S(\mathbf{q}, \omega)$

$$S(\mathbf{q},\omega) = \frac{1}{\mathcal{Z}} \sum_{i,f} e^{-\beta E_i} |\langle \phi_f | \psi^{\dagger} (\mathbf{q} - \mathbf{k}) \psi(\mathbf{k}) | \phi_i \rangle|^2 \, \delta(\hbar\omega + E_f - E_i)$$

For a given momentum transfer, only one (or a few) energy transfer would resonantly excite the system

Dispersion relation of interacting BECs

$$S(\mathbf{q},\omega) = \frac{1}{\mathcal{Z}} \sum_{i,f} e^{-\beta E_i} |\langle \phi_f | \psi^{\dagger}(\mathbf{q} - \mathbf{k}) \psi(\mathbf{k}) | \phi_i \rangle|^2 \, \delta(\hbar\omega + E_f - E_i)$$

Start from a BEC with $q = 0$
$$\delta(\hbar\omega + \epsilon(\mathbf{q}) - \epsilon(\mathbf{0}))$$

Observation of **Bogoliubov spectrum of excitations**, with phonons at low momenta

PRL 88, 120407 (2002)

Probing strongly-correlated fermions

At large momentum transfer, dynamical structure factor contains information about short-distance two-body wave-function: **measure of Tan's contact**

Carcy et al. PRL 122, 203401 (2019)

Superfluidity in 2D correlated fermions

Superfluidity observed in correlated 2D Fermi gas: no excitations (either phonons or pairs) below critical velocity

Sobirey et al. Science 372, 844 (2021)