Quantum gases in Optical Lattices Lecture #2

David CLEMENT

Institut d'Optique - Palaiseau, France

Band structure in a 1D lattice

Band gaps in square lattices

Band gaps in square lattices

 $V_0 \simeq 2.2 E_R$

Lowest-energy band

Normalized and shifted lowest-energy bands.

lowest-energy band dispersion smoothly changes from parabolic to sinusoidal:

$$E(q) - E_0 \simeq 4J\sin(qa/2)^2$$

Tight-binding regime (*lectures #3, #4*)

 $s\gtrsim 5$: energy bandwidth << energy bandgap

Band structure: summary

Bloch wave-functions

Crédit: Dalibard

Adiabatic loading in the lattice

Denschlag et al. J. Phys. B: At. Mol. Opt. Phys. 35 (2002)

Difficult to characterise precisely in experiment due to (small) atom losses being present

<u>NB:</u> condition for adiabatic loading in the presence of interaction non-trivial problem (see later)

Carcy et al. Phys. Rev. Lett. 126 045301 (2021)

Gericke et al. J. Mod. Phys. 54 735 (2006)

Non-interacting lattice bosons

Bose-Einstein condensate at q = 0 $|\Psi_0\rangle = \frac{1}{\sqrt{N!}} [a^{\dagger}(q=0)]^N |0\rangle$

Similar properties as BEC in a box or harmonic trap (coherent state)

- 0.4

- 0.2

Thermal cloud $k_B T \ll$ energy gap

0.0

0.2

0.4

Time-of-flight imaging

BEC: expansion of a phase-coherent matter wave from a periodic structure (optical analog)

Greiner et al. Nature (2002)

Non-interacting lattice fermions

How to obtain the population of the different bands?

Band mapping technique

Crédits: H. Perrin

Incoherent Bose gas in lowest-energy band

2ħk

Higher bands populated

Greiner et al. PRL 87 (2001)

Map band population onto momentum states: adiabatic closing of the lattice bands (time scale for decreasing lattice amplitude longer than energy gap between lowest bands)

NB: fast enough to avoid interaction (when present) mixing momentum components

2

1

0

Mancini @LENS - Florence (2015)

Non-interacting lattice fermions

Kohl et al. PRL **94** 080403 (2005)

In-situ quantum gas microscopes

Measurement of the atomic density in the lattice

(no single-atom-resolved or single-site-resolved)

Quantum gas microscopes

Gemelke et al. Nature **460**, 995 (2009)

Sherson et al. Nature 467, 68 (2010)

Quantum gas microscopes

Gillen PhD thesis (Greiner's group 2009)

	Quantum Gas in SW trap	2D Hubbard Lattice	Single Atom Detection
Lateral Light		758nm femtosecond light Up to 35 Erec	795nm near detuned light 5500 Erec
Axial Light	765nm ASE source	140 Erec	795nm near detuned light 2.5x10 ⁵ Erec
Fields+Cooling	Spherical Magnetic Trap		F=2->F'=3 Molasses Light F=1->F'=2 Repump Light Magnetic Field Compensation

Quantum gas microscopes

Momentum correlations in lattice BECs

Institut d'Optique - unpublished (2021)

BEC in a 1D lattice

Kramer et al. PRL 88, 180404 (2002)

Bloch oscillations

Control of Interaction-Induced Dephasing of Bloch Oscillations

M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas-Kopeinig, and H.-C. Nägerl Phys. Rev. Lett. **100**, 080404 – Published 28 February 2008

Precise measurement of $h \ / \ m_{ m Rb}$ using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant

atom number (a.u.)

Pierre Cladé, Estefania de Mirandes, Malo Cadoret, Saïda Guellati-Khélifa, Catherine Schwob, François Nez, Lucile Julien, and François Biraben Phys. Rev. A **74**, 052109 – Published 21 November 2006

Precision Measurement of Gravity with Cold Atoms in an Optical Lattice and Comparison with a Classical Gravimeter

N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino Phys. Rev. Lett. **106**, 038501 – Published 18 January 2011

0

1

-1

 $t_a = \tau_B$

 $t_a = 3\tau_B/4$

 $t_a = \tau_B/2$

 $t_a = \tau_B/4$

t_a=0

Dynamical instabilities in a 1D lattice

Observation of Dynamical Instability for a Bose-Einstein Condensate in a Moving 1D Optical Lattice

L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio Phys. Rev. Lett. **93**, 140406 – Published 29 September 2004

Tunable source of correlated atom beams

M. Bonneau, J. Ruaudel, R. Lopes, J.-C. Jaskula, A. Aspect, D. Boiron, and C. I. Westbrook Phys. Rev. A **87**, 061603(R) – Published 17 June 2013

