Many-body correlations and entanglement?

Reconstructing the quantum critical fan of strongly correlated systems using quantum correlations

Irénée Frérot 🖂 & Tommaso Roscilde 🖂

Nature Communications 10, Article number: 577 (2019) | Cite this article

Critical exponents?

Many-body correlations and entanglement?

n-order Renyi entropy:

$$S_n(\mathbf{A}) = \frac{1}{1-n} \log \operatorname{Tr}(\rho_{\mathbf{A}}^n)$$

Islam et al. Nature 528, 77 (2015)

Atom pairs in the quantum depletion

Atom pairs in the quantum depletion

Tenart et al. arxiv:2105.05664 (2021)

VOLUME 84, NUMBER 12	PHYSICAL REVIEW LETTERS	20 March 2000
Inseparability Criterion for Continuous Variable Systems		
Lu-Ming Duan, ^{1,2,*} G. Giedke, ¹ J. I. Cirac, ¹ and P. Zoller ¹		
_		

Experimental proof of entanglement can be obtained from measuring $\langle a^{\dagger}(-\mathbf{k})a(\mathbf{k})\rangle \simeq 0$

(this term is null in Bogoliubov theory)

Cauchy-Schwartz inequality :

$$\langle I_1 I_2 \rangle \leq \sqrt{\langle I_1^2 \rangle \langle I_2^2 \rangle} \longrightarrow g_A^{(2)}(0) \leq g_N^{(2)}(0)$$

Violation of CS inequality with a continuous variable (momentum): non-classical correlations

PHYSICAL REVIEW D 89, 105024 (2014)

Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?

Xavier Busch* and Renaud Parentani*

Quantum gases in Optical Lattices Lecture #4

David CLEMENT

Institut d'Optique - Palaiseau, France

Fermionic Mott insulator

Observation of suppression of double occupied sites

Jordens et al. Nature 455, 204 (2008)

Schneider et al. Science 322, 1520 (2008)

Quantum gas microscopes for fermions

2015 annus mirabilis!

Nat. Phys. 11, 738 (2015)

Na

Phys. Rev. Lett. 114, 213002 (2015)

Phys. Rev. Lett. 115, 263001 (2015)

Phys. Rev. Lett. 114, 193001 (2015)

Quantum gas microscopes for fermions

Fermionic Mott insulator

Phase diagram at half-filling

Esslinger, Ann. Rev. Cond. Matter Phys. 1, 129 (2010)

Antiferromagnetic order

0.6 දි 0.4

0 2

0.0

-10

-5

0

r sites

10

Mazurenko et al. Science 545, 462 (2017)

Antiferromagnetic order

Antiferromagnetic order

Phase diagram of cuprates

Physics of doped Mott insulators with breaking of particle-hole symmetry

Atomic Fermi-Hubbard: promising perspectives

Fermi-Hubbard as a minimal model for high-Tc (strong interaction regime)? Role of finite doping on spin ordering and transport? Pseudo-gap and strange metal phase?

Chiu et al. Science **365**, 251 (2019)

Hilker et al. Science **357**, 484 (2017)

