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Cooling below the limits

Previous course:

Two different cooling mechanisms relying on polarization gradients 

that allow to beat the Doppler limit:

• The first one relying on a modulation of the ground states light shifts, leading to dipole

forces and the so-called « Sysiphus » effect (lin perp lin polarisations)

• The second one on an atomic motion induced population difference between atomic

ground states, leading to imbalanced radiation pressure (𝝈+ − 𝝈− polarisations) 

But in both cases, 𝑇𝑙𝑖𝑚𝑖𝑡 is of the order of a few 𝐸𝑟

The next question being : « can we beat this limit » ?

How ?

→ Prevent the slowest atoms from scattering photons

« Transparency » beam to induce a light shift

Stellmer at al, PRL 110, 263003 (2013)

→ scattering rate depends on position

Can we make the photon absorption rate velocity dependent ?



Organization of the lecture

1 : VSCPT cooling

2 : Raman cooling

3 : Grey molasses
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Coherent population trapping

Consider an atom with a Λ shape level structure

And two laser fields E1 and E2

which couple resp g1 and g2 to the excited state e, with Rabi frequencies Ω1 and Ω2

e

g1

g2

Ω1 Ω2

In such a configuration, there is a « dark » state, which is uncoupled to the light

This dark state is a superposition of g1 and g2

From that state, the excitation to e is not possible due to destructive interference between

the two amplitudes of transition



Velocity selective coherent population trapping

Let us consider a simpler case, where the two ground states are degenerate

And the two laser fields are counterpropagating, with opposite circular polarisation 

but same frequency. 

Example: g1 and g2 are Zeeman states m = -1 and +1, while e is a m = 0 state

e

g1
g2

Ω1 Ω2

𝑘, 𝜔𝐿 −𝑘, 𝜔𝐿

𝝈−𝝈+

The atom-laser coupling is given by 

𝑉 = −𝑫. 𝑬𝟏 Ԧ𝑟, 𝑡 + 𝑬𝟐 Ԧ𝑟, 𝑡

=
ℏΩ1
2

| ۧ𝑒 𝑔1|𝑒ۦ
−𝑖𝜔𝐿𝑡−𝑖𝜑1 Ԧ𝑟 +

ℏΩ2

2
| ۧ𝑒 𝑔2|𝑒ۦ

−𝑖𝜔𝐿𝑡−𝑖𝜑2 Ԧ𝑟 + ℎ. 𝑐.



Velocity selective coherent population trapping

Since the two waves are counterpropagating, 𝜑1 Ԧ𝑟 = −𝑘𝑧 and 𝜑2 Ԧ𝑟 = +𝑘𝑧

𝑉 =
ℏΩ1
2

| ۧ𝑒 𝑔1|𝑒ۦ
−𝑖𝜔𝐿𝑡+𝑖𝑘𝑧 +

ℏΩ2
2

| ۧ𝑒 𝑔2|𝑒ۦ
−𝑖𝜔𝐿𝑡−𝑖𝑘𝑧 + ℎ. 𝑐.

Let us consider an atom at rest a the position 𝑧, 

and in the superposition state ۧΨ𝑁𝐶 ∝ Ω2 ۧ𝑔1 𝑒
−𝑖𝑘𝑧 − Ω1| ۧ𝑔2 𝑒

+𝑖𝑘𝑧

We find 𝑉| ۧΨ𝑁𝐶 = 0

The state | ۧΨ𝑁𝐶 is a dark state. 

An atom in that state is not coupled to the light field and stays there for ever.

But if the atom is not at rest, the two waves are doppler shifted in opposite directions 

and the two amplitudes of transition do not interfere any more.  



Velocity selective coherent population trapping

If we aim at describing cooling at recoil velocities and below, we shall treat

laser phases 𝜑1 Ԧ𝑟 and 𝜑2 Ԧ𝑟 , and thus 𝑧, as operators

Using 𝑒±𝑖𝑘𝑧 = σ𝑝 | ۧ𝑝 𝑝ۦ ∓ ℏ𝑘|

The coupling writes

𝑉 =෍

𝑝

ℏΩ1
2

| ۧ𝑒, 𝑝 ,𝑔1ۦ 𝑝 − ℏ𝑘| +
ℏΩ2

2
| ۧ𝑒, 𝑝 ൻ𝑔2,, 𝑝 + ℏ𝑘|𝑒−𝑖𝜔𝐿𝑡 𝑒−𝑖𝜔𝐿𝑡 + ℎ. 𝑐.

The laser field introduces couplings between momenta states in momentum families

𝐹𝑝 = | ۧ𝑒, 𝑝 , | ۧ𝑔1, 𝑝 − ℏ𝑘 , | ൿ𝑔2,, 𝑝 + ℏ𝑘

As long as we ignore spontaneous emission, 𝐹𝑝 is a closed family of states



Velocity selective coherent population trapping

| ۧΨ𝑁𝐶(𝑝) =
1

Ω1
2 + Ω2

2

Ω2| ۧ𝑔1, 𝑝 − ℏ𝑘 − Ω1| ൿ𝑔2,, 𝑝 + ℏ𝑘

In each family 𝐹𝑝, a state | ۧΨ𝑁𝐶(𝑝) is now given by 

Let us consider the state | ۧΨ𝐶(𝑝) is given by

| ۧΨ𝐶(𝑝) =
1

Ω1
2 + Ω2

2

Ω1
∗| ۧ𝑔1, 𝑝 − ℏ𝑘 + Ω2

∗ | ൿ𝑔2,, 𝑝 + ℏ𝑘

We have ۦ𝑒, 𝑝|𝑉| ۧΨ𝐶(𝑝) =
ℏ

2
Ω1

2 + Ω2
2𝑒−𝑖𝜔𝐿𝑡

We have indeed ,𝑒ۦ 𝑝|𝑉| ۧΨ𝑁𝐶(𝑝) = 0

| ۧΨ𝐶(𝑝) is coupled to the light



Velocity selective coherent population trapping

Let us assume that we have prepared an atom in the state | ۧΨ𝑁𝐶(𝑝)
and see how it will evolve

To calculate the evolution of the system in the family 𝐹𝑝 , we have to add to the laser 

coupling 𝑉 the free Hamiltonian 𝐻 =
𝑃2

2𝑚
+ ℏ𝜔𝑒| ۧ𝑒 |𝑒ۦ

Such calculations can be done using the formalism of the density matrix 𝜎
(details in A. Aspect et al, JOSA B 6, 2112 (1989))  

We find
𝑑

𝑑𝑡
|Ψ𝑁𝐶(𝑝)|𝜎ۦ ۧΨ𝑁𝐶 𝑝 = −𝑖𝑘

𝑝

𝑚

2Ω1Ω2

Ω1
2+Ω2

2 |Ψ𝑁𝐶(𝑝)|𝜎ۦ ۧΨ𝐶 𝑝 +𝑐. 𝑐.

For 𝑝 = 0, the population of Ψ𝑁𝐶(𝑝) does not evolve, even when taking account the 

free evolution (kinetic energy). This will still hold when taking into account spontaneous

emission, as Ψ𝑁𝐶(𝑝) is a superposition of stable ground states

But not when 𝑝 ≠ 0, 

this because the kinetic energies of | ۧ𝑝 + ℏ𝑘 and | ۧ𝑝 − ℏ𝑘 differ by 
2ℏ𝑘𝑝

𝑚

This coherent population trapping depends on 𝑝 , it is thus velocity selective



Velocity selective coherent population trapping

Let us now consider the role of spontaneous emission

For resonant excitation (Δ = 0) and weak excitation, Ω1, Ω2≪ Γ,

the Rabi coupling Ω/ 2 (when Ω1 = Ω2= Ω) between | ۧΨ𝐶(𝑝) and | ۧ𝑒, 𝑝 gives to 

the state | ۧΨ𝐶(𝑝) a finite width

Γ′ =
Γ

2
𝑠 =

Γ

2

2
Ω

2

2

Γ2
⇒ Γ′ =

Ω2

2Γ

And the coupling
𝑘𝑝

𝑚
between | ۧΨ𝐶 𝑝 and | ۧΨ𝑁𝐶(𝑝) gives to | ۧΨ𝑁𝐶(𝑝) a width

Γ′′ =

𝑘𝑝
𝑚

2

Γ′
⇒ Γ′′ =

2
𝑘𝑝
𝑚

2

Γ

Ω2

Γ′′ is the probability per unit time for an atom to leave the state | ۧΨ𝑁𝐶(𝑝)

The smaller 𝑝, the longer an atom stays « trapped » in | ۧΨ𝑁𝐶(𝑝)

Equivalently, for an interaction time 𝜃, only atoms with 𝑝 such that Γ′′𝜃 < 1,

or 
𝑘𝑝

𝑚

2
<

Ω2

2𝜃Γ
can remain trapped in | ۧΨ𝑁𝐶(𝑝)



Velocity selective coherent population trapping

Role of spontaneous emission: 

Allows jump from one family to an other, and eventually from a family 𝐹𝑝 to 

the family 𝐹𝑝=0,  where the atoms may be trapped in the state | ۧΨ𝑁𝐶(0)

The mechanism for accumulating atoms in the « trapped » state is the 

diffusion in momentum space induced by spontaneous emission

But an atom falling into the 𝐹𝑝=0 family might fall into | ۧ𝑔1, −ℏ𝑘 or | ൿ𝑔2,, 𝑝 + ℏ𝑘 , 

or a linear combination of these, and not necessarity in | ۧΨ𝑁𝐶(0)



Velocity selective coherent population trapping

Role of spontaneous emission: 

Imagine that the atom falls for instance into the state | ۧ𝑔1, −ℏ𝑘

| ۧ𝑔1, −ℏ𝑘 =
1

2
| ۧΨ𝑁𝐶 0 + | ۧΨ𝐶(0) (here we consider Ω1 = Ω2= Ω)

| ۧΨ𝑁𝐶 0 is stable, but not | ۧΨ𝐶(0) , which means that it will excited by the lasers at a rate Γ′

After a time long with respect to 1/Γ′, the atom will be either in | ۧΨ𝑁𝐶 0 , where it will remain

trapped, or will be involved in new fluorescence cycles

This state filtering process leaves half of the atoms in the trapped state, while the other half

resume a sequence of fuorescence cycles



Velocity selective coherent population trapping

Time evolution of the momentum distibution

can be obtained with numerical simulations

We start with a Gaussian momentum distribution 

with a HWHM of 3ℏ𝑘

We observe the atoms accumulating in the trapped

state (double subrecoil peak distribution) as the 

interaction time 𝜃 increases

The width of the peaks decreases

with the interaction time

A. Aspect at al, JOSAB 6, 2112-2124 (1989)



Velocity selective coherent population trapping

For Ω1 ≠ Ω2, 

the momentum distribution is not symetric

| ۧΨ𝑁𝐶(𝑝) =
1

Ω1
2 + Ω2

2

Ω2| ۧ𝑔1, 𝑝 − ℏ𝑘 − Ω1| ൿ𝑔2,, 𝑝 + ℏ𝑘

VSCPT works even when the lasers are 

detuned, and does not depend on the sign of 

the detuning



Velocity selective coherent population trapping

Experimental demonstrations:

Beam of metastable helium, ENS

Laser tuned on the 23S1 → 23P1 transition

A. Aspect et al, PRL 61, 826 (1988)

Double peak distribution with subrecoil widths

Temperatures as low as TR/800 have been obtained

Measurement via interferometric method based on making the wavepackets overlap

Saubamea et al, PRL 79, 3146 (1997)



Velocity selective coherent population trapping

Extension at 2D:

Lawall et al, PRL 73, 3146 (1994)

Four peaks

at 𝑣𝑥 = ±𝑣𝑟 and 𝑣𝑦 = ±𝑣𝑟

With subrecoil widths ~ 𝑣𝑟/4

Switching off adiabatically three of the four beams

leave the atoms in a single subrecoil peak

S. Kulin, PRL 78,4185 (1997)



Velocity selective coherent population trapping

Extension at 3D:

Lawall et al, PRL 75, 4194 (1995)

4 beams at 45° in the (x,z) plane

2 beams in the y direction

This leads to the arrival of the atoms

on the detector after different delays



Velocity selective coherent population trapping

Quantum MC simulations: 

Random walk in the momentum space

dominated by rare events, whose duration 

is a significant fraction of the interaction 

time

The distribution of the trapping times 𝜏 in 

a small trapping volume around 𝑝 = 0
scales as 𝑓𝜏 𝜏 ~ 1/𝜏3/2 (1D)

𝜏 not defined (diverges)

Levy statistics are used to deal with such distributions

With this tool, one shows that

𝑇 ~ 1/𝜃

𝑓 𝑝 ~
1

𝑝2
(Lorentzian-like rather than Gaussian)

F. Bardou et al, Phys. Rev. Lett. 72, 203 (1994)



Organization of the lecture
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Stimulated Raman transition

e

g1

g2

𝜔1

𝜔2

Δ𝑅

Δ𝑅

𝑘1, 𝜔1 𝑣,𝜔0 𝑘2, 𝜔2

𝜔0

Conter-propagating Raman transitions: 

Two (counter-propagating) lasers L1 and L2, detuned from resonance

with a frequency difference 𝜔1 −𝜔2 that matches the energy difference 𝜔0 between g1 and g2

The atom initially in | ۧ𝑔1, 𝑝

Absorbs a photon in L1

And reemits in a stimulated way in L2

It ends up in | ۧ𝑔2, 𝑝 + ℏ𝑘1 − ℏ𝑘2

𝑘𝑒𝑓𝑓 = 𝑘1 − 𝑘2 ~ 2𝑘

Resonance condition:

𝜔1 − 𝜔2 = 𝜔0 +
𝑘𝑒𝑓𝑓𝑝

𝑚
+

ℏ𝑘𝑒𝑓𝑓
2

2𝑚

Doppler shift

→ velocity selective process



Stimulated Raman transitions

For large detunings Δ𝑅~ a few GHz, one can neglect spontaneous emission

The system reduces to an effective two level atom

The coupling between | ۧ𝑔1, 𝑝 and | ൿ𝑔2, 𝑝 + ℏ𝑘𝑒𝑓𝑓 leads to Rabi oscillations 

with a Rabi frequency

Ω𝑅 =
Ω1Ω2

2Δ𝑅

Effect of a (square) Raman "𝜋" pulse 

with Ω𝑅 < 𝑘𝜎𝑣

The resonant velocity class is transferred

from state | ۧ𝑔1 to state | ۧ𝑔2

Initial velocity distribution in state | ۧ𝑔1 , 

with rms width 𝜎𝑣| ۧ𝑔1

| ۧ𝑔2
| ۧ𝑔1

Moler at al, PRA 45, 342 (1991)



Raman cooling

Idea of Raman cooling: 

Apply a sequence of such pulse with different Raman frequency differences in order to 

transfer all velocity classes one after the other

e

g1

g2

2nd step:

Apply a pulse of « repumper » 

to bring the velocity selected atoms back into g1

1st step:

Realize such a "𝜋" pulse, with a certain detuning, 

so as to reduce the velocity

of (a certain velocity class) of the atoms

Initial distribution

distribution in | ۧ𝑔2

distribution in | ۧ𝑔1

distribution in | ۧ𝑔1



Raman cooling

Example: 

Initial velocity distribution with rms width of 6𝑣𝑟

Square pulses, with Rabi frequencies of Ω𝑅 = 𝛿𝑟 = 2𝑘𝑣𝑟

And detunings 6𝛿𝑟 , 4𝛿𝑟, 2𝛿𝑟

Optimization requires:

- Transitions with momentum transfer in the other direction (swap directions of k1 and k2)

- Tailored sequences: pulse shape and detunings



Raman cooling

How to improve the pulse velocity selectivity ?

Ideal case would be a rectangular shape excitation profile, 

that would transfer velocities in a given range, and nothing outside

• Square pulses: Ω𝑅 constant

Sinus cardinal lineshape

• Blackman pulses: Ω𝑅 𝑡 = 0.42 + 0.5 cos 2𝜋𝑡/𝜏 + 0.08 cos 4𝜋𝑡/𝜏 , 

with 𝜏 the duration of the pulse

Not really rectangular

But better defined

No more ripples



Raman cooling

Optimization of the pulse sequence

Decreasing detunings and Rabi frequencies

Experimental realizations:

1D: 𝜎𝑣~0.2𝑣𝑟
Mark Kasevich and Steven Chu, PRL 69, 1741 (1992)

Extension to 2D: 𝜎𝑣~1.2𝑣𝑟 and  3D: 𝜎𝑣~2.3𝑣𝑟
Nir Davidson, Heun Jin Lee, Mark Kasevich, and Steven Chu, PRL 72, 3158 (1994)

2D 3D

J. Reichel et al 1994 EPL 28 477



Raman cooling

Are square pulses that bad a choice ?

With a proper choice of parameters (𝛿, Ω𝑅), 

transfer efficiency is null for atoms at rest

𝑣 = 0 is a dark state

Experimental realizations:

1D: Δ𝑣 ~ 0.12𝑣𝑟

J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, 

S. Rand, C. Salomon, and C. Cohen-Tannoudji

Raman Cooling of Cesium below 3 nK: 

New Approach Inspired by Lévy Flight Statistics

PRL 75, 4575 (1995)

2D: Δ𝑣 ~ 0.39𝑣𝑟

V. Boyer, L. J. Lising, S. L. Rolston, and W. D. Phillips

PRA 70, 043405 (2004)



Raman sideband cooling

Extension of Raman cooling for atoms trapped in an optical lattice

Loading cold atoms out of MOT/molasses at temperature T ~ few µK and in a spin 

polarized state (F=3,mF=+3 state for Cs atoms for instance) in an optical lattice

Atoms do occupy the different wells

in many vibrational states.

Typical vibrational frequency: 10-100 kHz range

• Apply a magnetic field to lift the degeneracy

• Make the energy levels

| ۧ𝐹 = 3,𝑚𝐹 = 2, 𝜈 and | ۧ𝐹 = 3,𝑚𝐹 = 3, 𝜈 + 1
degenerate Vuletic et al, PRL 81, 5769 (1998)



Raman sideband cooling

A cooling cycle consists in:

- a Raman pulse with 𝜋 − 𝝈+ polarisations 

Transfer of the atoms from | ۧ𝐹 = 3,𝑚𝐹 = 3, 𝜈
to | ۧ𝐹 = 3,𝑚𝐹 = 2, 𝜈 − 1

- a repumping pulse on the | ۧ𝐹 = 2 → | ۧ𝐹′ = 2

Optical pumping the atoms back into

| ۧ𝐹 = 3,𝑚𝐹 = 3, 𝜈 − 1

Atoms being tightly bound, the scattered photon do not change the vibrational state 

(Lamb Dicke regime)

At the end of the cycle, the atoms have lost one quantum of vibration



Raman sideband cooling

Probability for the atom in state |𝑒 ۧ, 𝑛𝑥 to decay in |𝑔 ۧ, 𝑛′𝑥 ∝ 𝑛𝑥 𝑒
𝑖𝑘 ො𝑥 𝑛′𝑥

2

Spatial extension of a state | ۧ𝑛𝑥 ≈ 𝑛𝑥𝑎0

With 𝑎0 =
ℏ

𝑚𝜔
, the extension of the ground state

For small 𝑛𝑥, 𝑘𝑟 ~ 𝑘𝑎0 ~
ℏ𝑘2

2𝑚𝜔
= 𝜂

Lamb Dicke parameter

𝜂 ≪ 1 for large enough 𝜔

Lamb Dicke regime

Credit:Jean Dalibard



Raman sideband cooling

Probability for the atom in state |𝑒 ۧ, 𝑛𝑥 to decay in |𝑔 ۧ, 𝑛′𝑥 ∝ 𝑛𝑥 𝑒
𝑖𝑘 ො𝑥 𝑛′𝑥

2

For tight confinements,

𝑘𝑟 ≪ 1, 𝜂 ≪ 1, 𝑒𝑖𝑘 ො𝑥 = 1 + 𝑘ො𝑥

𝑛𝑥 𝑒
𝑖𝑘 ො𝑥 𝑛′𝑥 ≈ 𝛿𝑛𝑥,𝑛′𝑥 +

𝑘𝑎0

2
(𝛿𝑛𝑥,𝑛′𝑥+1 + 𝛿𝑛𝑥,𝑛′𝑥−1)

with ො𝑥 =
𝑎0

2
( ො𝑎+ + ො𝑎) 

Decay predominantly towards 𝑛′𝑥 = 𝑛𝑥

~𝜂 ≪ 1

Lamb Dicke regime



Raman sideband cooling

Method employed in ion traps

Laser tuned on the red sideband

|𝑔 ۧ, 𝑛 + 1 → |𝑒 ۧ, 𝑛

When deexciting the ions returns

preferentially in |𝑔 ۧ, 𝑛

At each absorption/fluorescence cycle,

the ion looses on quantum of energy ℏ𝜔

Credit:Jean Dalibard



Raman sideband cooling

A sequence of such cooling cycles allow to reduce the vibration quantum number 𝜈 to 0

Atoms in the vibrational ground state are in a « dark » state, with respect to both the 

Raman transitions and the optical pumping

Experimental realizations:

Vuletic et al, PRL 81, 5769 (1998)

1D lattice, Cs atoms

3D (!) temperature: 2.8 µK

80% in the vibrational ground state 

(in the steepest direction)

Notably : phase space density ~1/180 and density of 1.4 1013 at/cm3

This is 4-5 orders of magnitude better than with molasses

Collisional coupling allows 3D cooling

radial

axial

Let us come back to the cooling of neutral atoms



Raman sideband cooling

Extension to 2D and 3D lattices

S.E. Hamman et al, PRL 80, 4149 (1998)

2D lattice with Cs atoms

 𝑛𝑥 = 𝑛𝑦 ~ 0.024

 > 95% in the vibrational ground state

Kerman et al, PRL 84, 440 (2000)

3D lattice with Cs atoms

 Cooling time 10 ms

 80% in the vibrational ground state 

 290 nK (after adiabatic release)

phase space density ~
1

500

density of 1.1 1011 at/cm3

Adiabatic cooling

Decrease of the lattice depth over 1ms

𝑈 𝑡 = 𝑈0(1 + 𝑡/𝑡0), with 𝑡0 = 100 µs

Jiazhong Hu at al., Science 358, 1078 (2017)

2D lattice Rb87

Cycles of cloud compression + Raman degenerate cooling + far detuned pumping beam

→ BEC reached with 1400 atoms in 300 ms



Organization of the lecture

1 : VSCPT cooling

2 : Raman cooling

3 : Grey molasses



Grey molasses

Idea: combine dark states and Sisyphus-like cooling

Model transition: J=1 → J=1 transition, for which a dark state exists

Configuration « lin 𝜃 lin »: two counterpropagating laser beams, 

with linear polarisations, with an angle 𝜃 between them

J = 1 

J = 1 
Since the coupling 0-0 is null, 

the evolution is restricted after a few cycles 

to the states | ۧ𝑒,𝑚 = 0 , | ۧ𝑔,𝑚 = −1 , | ۧ𝑔,𝑚 = +1

e

g2

Lambda system 

| ۧ𝑔1 = | ۧ𝑔,𝑚 = −1
| ۧ𝑔2 = | ۧ𝑔,𝑚 = +1
| ۧ𝑒 = | ۧ𝑒,𝑚 = 0

g1



Grey molasses

Since the two 𝝈+ and 𝝈− fields are orthogonal, the intensity is given by

𝐼 𝑧 =
ℰ2

2
cos 𝑘𝑧 −

𝜃

2

2

+ cos 𝑘𝑧 −
𝜃

2

2

=
ℰ2

2
1 + cos 2𝑘𝑧 cos 𝜃 =

ℰ2

2
𝐷(𝑧)

The intensity is modulated with a spatial period of 
𝜆

2

The total electric field is 𝐸 𝑧, 𝑡 = ℰ+ 𝑧 exp −𝑖𝜔𝑡 + 𝑐. 𝑐.

with ℰ+ 𝑧 = −i
ℰ

2
𝜖1 exp 𝑖𝑘𝑧 + 𝜖2 exp −𝑖𝑘𝑧

and 𝜖1 = 𝜖𝑥 sin
𝜃

2
+ 𝜖𝑦 cos

𝜃

2
and 𝜖2 = − 𝜖𝑥 sin

𝜃

2
+ 𝜖𝑦 cos

𝜃

2

This also writes

ℰ+ 𝑧 =
ℰ

2
𝜖+ cos 𝑘𝑧 +

𝜃

2
+ 𝜖− cos 𝑘𝑧 −

𝜃

2
with ൞

𝜖+ = −
1

2
𝜖𝑥 + 𝑖𝜖𝑦

𝜖− =
1

2
𝜖𝑥 − 𝑖𝜖𝑦

The polarisation is equivalent to two phase-shited 𝝈+ and 𝝈− standing waves
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The laser coupling now writes as

𝑉 =
ℏΩ1
2

−cos 𝑘𝑧 +
𝜃

2
| ۧ𝑒 |𝑔1ۦ + | ۧ𝑒 |𝑔2ۦ cos 𝑘𝑧 −

𝜃

2
𝑒−𝑖𝜔𝐿𝑡 + ℎ. 𝑐.

We now introduce the states | ۧΨ𝑁𝐶(𝑧) and | ۧΨ𝑁𝐶(𝑧)

| ۧΨ𝑁𝐶(𝑧) =
1

𝐷(𝑧)
cos 𝑘𝑧 −

𝜃

2
| ۧ𝑔1 − cos 𝑘𝑧 +

𝜃

2
| ۧ𝑔2

| ۧΨ𝐶(𝑧) =
1

𝐷(𝑧)
cos 𝑘𝑧 +

𝜃

2
| ۧ𝑔1 + cos 𝑘𝑧 −

𝜃

2
| ۧ𝑔2

The laser coupling is then given by 𝑉 =
ℏΩ(𝑧)

2
| ۧ𝑒 Ψ𝐶(𝑧)|𝑒ۦ

−𝑖𝜔𝐿𝑡 + ℎ. 𝑐.

with Ω 𝑧 = Ω1𝐷(𝑧)

| ۧΨ𝐶 𝑧 is coupled to the light field, | ۧΨ𝑁𝐶 𝑧 is not
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e

g2g1

Let us now consider the weak excitation regime, 

𝑠 =
Ω2/2

Δ2 + Γ2/4
≪ 1

and  a detuning Δ > 0

Δ

| ۧΨ𝐶(𝑧) being coupled to the light acquires

- a light shift ℏΔ′ = ℏ
Δ

2
𝑠 = ℏ

Δ

4

Ω 𝑧 2

Δ2+
Γ2

4

= δ′𝐷(𝑧) with δ′ =
Δ

4

Ω1
2

Δ2+
Γ2

4

independent of z

- a radiative decay rate Γ′ =
Γ

2
𝑠 =

Γ

2

Ω 𝑧 2

Δ2+
Γ2

4

= 𝛾′𝐷(𝑧) with 𝛾′ =
Γ

4

Ω1
2

Δ2+
Γ2

4

independent of z

| ۧΨ𝑁𝐶(𝑧) being not coupled to the light does not get shifted and does not decay
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Since Δ > 0, | ۧΨ𝐶(𝑧) lies above | ۧΨ𝑁𝐶 𝑧

Its light shift, being proportional to 𝐷(𝑧), 

is modulated with a spatial period of 
𝜆

2

Cooling mechanism

Consider an atom

initially in | ۧΨ𝑁𝐶 𝑧0 at initial position 𝑧0
moving with a velocity 𝑣

At a later time and position 𝑧1, | ۧΨ𝑁𝐶 𝑧0 is no longer a dark state, since at the position 

𝑧1, it differs from the dark state | ۧΨ𝑁𝐶 𝑧1

| ۧΨ𝑁𝐶 𝑧0 is thus contaminated by | ۧΨ𝐶 𝑧1 . 

It thus acquires a radiative lifetime, and can scatter photons.  

In the above picture, the atom is transferred to | ۧΨ𝐶 ,
then climbs a hill, scatters a photon and returns in | ۧΨ𝑁𝐶

→ Sisyphus-like cooling

Weidemüller, at al. 

Europhysics Letters 27 (2), 109–114 (1994)
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Restricting ourselves to the ground states,

we can write the state ۧ|Ψ in the | ۧΨ𝐶 𝑧 , | ۧΨ𝑁𝐶 𝑧 basis 

ۧΨ = 𝑎(𝑡) ۧΨ𝑁𝐶 𝑧 + 𝑏(𝑡)| ۧΨ𝐶 𝑧

with 𝑧 = 𝑣𝑡 for an atom moving a velocity 𝑣

At 𝑡 = 0, the atom is at the position 𝑧0 in the state | ۧΨ𝑁𝐶 𝑧0 , so that 𝑎 0 = 1 and 𝑏(0) = 0

The evolution of ۧ|Ψ follows the Schrodinger equation 𝑖ℏ
𝑑

𝑑𝑡
ۧ|Ψ = H ۧ|Ψ = (𝐻𝑒𝑓𝑓 + 𝑉) ۧ|Ψ , 

with 𝑉 =
ℏΩ(𝑧)

2
| ۧ𝑒 Ψ𝐶(𝑧)|𝑒ۦ

−𝑖𝜔𝐿𝑡 + ℎ. 𝑐. and  𝐻𝑒𝑓𝑓 = ℏ
Δ′−𝑖

Γ′

2
0

0
0

Since
𝑑

𝑑𝑡
ۧ|Ψ =

𝑑

𝑑𝑡
𝑎 𝑡 | ۧΨ𝑁𝐶 𝑧 + 𝑏(𝑡)| ۧΨ𝐶 𝑧

= ሶ𝑎 𝑡 | ۧΨ𝑁𝐶 𝑧 + 𝑎 𝑡 𝑣
𝑑

𝑑𝑧
ۧ|Ψ𝑁𝐶 𝑧 + ሶ𝑏 𝑡 | ۧΨ𝐶 𝑧 + 𝑏(𝑡)𝑣

𝑑

𝑑𝑧
ۧ|Ψ𝐶 𝑧

And projecting over, Ψ𝐶ۦ 𝑧 |, we get

ሶ𝑖𝑏 𝑡 = 𝑏(𝑡)(Δ′ − 𝑖
Γ′

2
) − 𝑖𝑎 𝑡 𝑣 Ψ𝐶ۦ 𝑧 |

𝑑

𝑑𝑧
ۧ|Ψ𝑁𝐶 𝑧
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Using the expression of ۧ|Ψ𝑁𝐶 𝑧 and ۧ|Ψ𝐶 𝑧 , we find Ψ𝐶ۦ 𝑧 |
𝑑

𝑑𝑧
ۧ|Ψ𝑁𝐶 𝑧 = −

𝑘 sin 𝜃

𝐷(𝑧)

So that ሶ𝑖𝑏 𝑡 = 𝑏 𝑡 Δ′ − 𝑖
Γ′

2
+ 𝑖𝑎 𝑡 𝑣

𝑘 sin 𝜃

𝐷(𝑧)

For slow velocities, and at steady state is, 𝑎 ≈ 1 and 𝑏 ≈
−𝑖

Δ′−𝑖
Γ′

2

𝑘𝑣 sin 𝜃

𝐷(𝑧)

ۧΨ(𝑡) = ۧΨ𝑁𝐶 𝑧 +
−𝑖

Δ′−𝑖
Γ′

2

𝑘𝑣 sin 𝜃

𝐷(𝑧)
| ۧΨ𝐶 𝑧

The coupling to | ۧΨ𝐶 𝑧 is a « motional » coupling, related to the time evolution of 

the wavefunctions of ۧ|Ψ𝑁𝐶 and ۧ|Ψ𝐶

It is maximal when 𝐷(𝑧) is minimal, 

which corresponds to the minimum of the potential

Atoms are thus preferentially transfered to ۧ|Ψ𝐶 𝑧
at the bottom of the hill

But they absorb photons preferentially at the top, 

since this is where the intensity is maximal.
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The force is given by

𝐹 = −128 ℏ𝑘
Δ

Γ
Δ2 +

5

4
Γ2

𝑘𝑣 3

Ω1
4 𝐴(𝜃)

With 𝐴 𝜃 =
8

5𝜋
sin2𝜃 cos 𝜃 0׬

2𝜋
𝑑𝑢

cos 𝑢

1+cos 𝜃 cos 𝑢 5

It scales as 𝑣3, and depends on the angle 𝜃

For 𝜃 = 𝜋/2, it vanishes since the intensity

is constant and this is no light shift modulation

Time evolution of the momentum distribution calculated with quantized momenta

Shahriar et al., PRA 48, R4035 (1993)

At short times, Sisyphus cooling

At long times, accumulation in the dark state 
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(Early) experimental demonstrations

C. Valentin et al EPL 17 133 (1992)

Observation of sub-Doppler cooling on a J → J-1 transition, with a blue detuning

D. Boiron, C. Triché, D. R. Meacher, P. Verkerk, and G. Grynberg

Phys. Rev. A 52, R3425(R) (1995)

3D cooling in a 4 beam molasses tuned on a Fg=3→Fe=2 transition of Cs

T < 5 µK in 1 ms

D. Boiron et al. Phys. Rev. A 53, R3734(R) (1996)

6 beam molasses on the blue side of the Fg=3→Fe=2 transition of Cs

Minimum temperature 1.1 µK

Sides effects: 

Temperature deviates from theory for large detunings

This heating is due to parasitic excitation to Fg=3→Fe=3 

Temperature depends on density ~ 0.6µK / 1010at/cm3

This effect is attributed to photon multiple scattering
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More recent experimental demonstrations

Grey molasses have gained a renewed interest in recent years

for cooling K, Li but also Rb

Difficulty with K and Li:

Small (of order of a few Γ), and eventually inverted, hyperfine structure 

→ compromizes the efficiency of red detuned sub-Doppler cooling

(especially when increasing the detuning)

Implementation of grey molasses 

on the D1 line (instead of the D2): 

• less hyperfine states, 

• hyperfine states better separated

D. Rio Fernandes, EPL 100 63001 (2012)

6.5 108 atoms of 40K cooled down to 20 µK in 8 ms
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Same scheme applied to:

• 7Li (A.T. Grier at al., PRA 87, 063411 (2013))

• 39K (G. Salomon et al, EPL 104 63002 2013)

Temperature as low as 6 µK

Narrow minimum when exactly

at the Raman resonance condition

But with 87Rb, it works fine on the D2 line as well

Rosi et al.. Sci Rep 8, 1301 (2018)

T = (4.0 ± 0.3) μK

But a gain of ~10 in PSD

with respect to ordinary 

laser sub-Doppler cooling


